MATH 320 NOTES, WEEK 7

Recall that we proved that following lemmas:
If L:V — W is a linear transformation, then
(1) ker(L) = {& € V | L(z) = 0} is a subspace of V, nullity(L) =
dim(ker(L)).
(2) ran(L) = {L(z) | z € V'} is a subspace of W, rank(L) = dim(ran(L)).
(3) L is one-to-one iff ker L = {0}.
(4) If {L(z1),..., L(xy)} is linearly independent, then {zi,...,z,} are
linearly independent.
(5) If span({x1,....,xn}) =V, then span({L(z1),..., L(zy)}) = ran(L).

Theorem 1. Suppose that V' is a finite dimensional vector space and L :
V — W is a linear transformation. Then

dim(V') = nullity(L) + rank(L).

Proof. Suppose that a = {z1,...,x,} is a basis for ker(L). Extend a to a
basis f = {1, ..., Tk, Tht1, ..., Tn } for V. Let

5 = {L(zks1)s o D)}
We claim that |y| = n — k and that + is a basis for ran(L).

Span First we show that span(vy) = ran(L). Since f is a basis for V,
we have that span({x1,...,z,}) =V, and so, by the last item (5) above, we
have that span({L(x1),..., L(zy)}) = ran(L).

And, since 1, ...,z € ker(L), we have that:
span({L(x1), ..., L(x}), L(zps1), .., L(zn)}) = span(0, L(zp1), ..., L(zp)}) =
span(7y).

It follows that span(y) = ran(L).

Linear independence Next we show that ~ is linearly independent.
Suppose that for some scalars agi1, ..., an,

apr1L(zpi1) + oo + anL(zy) = 0.
Then, by linearity,
L(ag11Tk41 + .. + apxy) = 0.

So, ag+1@k+1 + - + anxy, € ker(L). Then since « is a basis for the kernel,
for some scalars b1, ..., by,

Qpt1Tks1 + oo + apxy = b1z + ... + by,
then
bix1 + ... + bprp — Ag+1Tk+1 — ... — Apxyn = 0.
Since S is linearly independent, we have by = ... = by, = ag11 = ... = a, =

0, which is what we wanted to show.
1
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Note that, since  is linearly independent, for any k < i < j < mn, L(x;) #
L(xj). (Otherwise L(x;) — L(z;) would be a nontrivial linear combination
equal to 0.). So, dim(ran(L)) = |y| = n — k.

In conclusion,

nullity(L) + rank(L) =k + (n — k) = n = dim(V).
O

Corollary 2. Suppose T : V. — W is a linear transformation, V is finite
dimensional, and dim(V') = dim(W).

Then, TFAE

(1) T is one-to-one;

(2) T is onto;

(3) rank(T) = dim(V).
Proof. We have that T is one-to-one iff ker T = {0} iff nullity(T) = 0 iff
rank(T) = dim(V) = dim(W) iff dim(ran(7)) = dim(W) iff ran(T) = W iff
T is onto.

U

Theorem 3. Let V, W be two vector spaces over F, and suppose that {v1, ...,v,}
is a basis for V. Then for any fized set of vectors {wi,...,wy} in W, there
is a unique linear transformation T : V — W, such that for all i < i <mn,

Proof. For the existence, define a linear transformation 7' as follows. Let
x € V. Let aq,...,a, be the unique scalars, such that
T =a1v1 + ... + apvy.
Set T'(x) = aqwy + ... + apw,. Then by definition, for every 1 < i < n,
T(Ui) = W;.
Next we have to show that T is linear. So, suppose that x,y € V and

¢ € F. we have to show that T'(cx + y) = ¢T'(x) + T(y). Let ay,...,a, and
b1, ..., b, be the unique scalars, such that

& T =a1v| + ... +anvy,
o y=Dbvy + ... + byu,.
Then,

o T'(x) =ajwy + ... + apwy,
o T(y) =biwy + ... + bpwn.
So, ¢T'(x) + T(y) = c(arwy + ... + apwy) + bywy + ... + bywy, =
= (ca1 + by)wi + ... + (can + by)wy,.
Also, we have that
o cx+y=clavy + ... + apvy) + (b1vy + ... + bpoy) =
= (cay + by)v1 + ... + (cay, + by)vy, and so,
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o T(cx+y)=(cay + b1)wy + ... + (cayn + by)wy,.
It follows that T'(cx +y) = ¢T'(z) + T(y). So T is a linear transformation.

Next we have to show uniqueness. To that end, suppose that T, U : V —
W are two linear transformations, such that for all 1 <7 < n,

T(Uz‘) = U(UZ) = W;j.

We have to show that T'=U.

Let x € V be arbitrary. Let ai,...,a, be the unique scalars, such that
T = aiv1 + ... + apv,. Then, by linearity of T,
T(x) =T(a1v1 + ... + apvy) = a1T(v1) + ... + @, T(vy) = a1w1 + ... + apwy,.
And similarly, by linearity of U,
U(z) =U(a1v1 + ... + apvp) = arU(v1) + ... + anU(vy) = aqwy + ... + apwy,.
So T'(x) = U(x). Since z was arbitrary, it follows that T'= U. O

Corollary 4. LetT,U : V. — W be two linear transformations and {vy, ..., v, }
be a basis for V.. Suppose that for alli <i <n, T(v;) = U(v;). ThenT =U.

2.2 The matrix representation of a linear transformation

Recall that given a matrix A € My, ,,(F'), multiplication by this matrix,
Ly: F" — F* defined by Lx(z) = Az, is a linear transformation.

In this section we will see that every linear transformation T': V — W,
where V is finite dimensional, can be viewed as multiplication by a matrix.
Since the domain of matrix multiplication is of the form F™, first we have
to find a way to identify V' as F", where n = dim(V'). For that we need the
notion of an ordered basis 5 for V. Then, for a vector x € V, the notion of
a coordinate vector of x relative to f.

Definition 5. 5 = {z1,...,z,} is an ordered basis for a vector space V,
if {x1,...,xn} is a basis for V', and the vectors are ordered according to the
indices. In other words the order of the vectors matter.

Example: {1, 2,22} is an ordered basis for Py(F).

Note that {z, 1,22} is a different ordered basis for Py(F).

Definition 6. Let § = {x1,...,2,} be an ordered basis for V and x € V.
The coordinate vector of x relative to [ is

(5] = (a1, ..., an),

where ai, ..., a, are the unique scalars in F, such that x = a1x1 + ... + apT,.
Note that [xg] € F™.

Examples: Consider p =5 + 210z — 322 € Py(F).
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(1) Let 8 = {1,z, 2%}, then
[pls = (5,210, -3);
(2) Let a = {22, 2,1}, then
[Pla = (=3,210,5);
(3) Let v = {1+ x,2 + 22, 2%}. Then
[p]y = (5,205, —208);
More examples:

(1) Let z = (ai,...,an) € F", and let e = {ey,...,en} be the standard
ordered basis. Then
[2]e =2

(2) Let z = (4,0,—2) € F3 and a = {(1,1,0), (1, ~1,0), (0,0,2)}. Then
[m]a = <272a_1>'

_11 (2)>’ and let e = {E11, E12, E21, E92} be the standard

ordered basis. Then

(3) Let A =

[A]e == <]-a 25 _1) O>7
(4) Let A be as above, and § = {EH, Erii412, E11401, EQQ}. Then
(Al = (0,2, —1,0).

The next lemma shows that we can use the coordinate vector representa-
tion to identify a vector space V of dimension n with F™.

Lemma 7. Suppose V is a vector space over a field F', dim(V') =n, and
is an ordered basis for V. Let ¢g: V — F"™ be given by

pp(x) = [x]p.
Then ¢g is a one-to-one, onto linear transformation.
Proof. Let B = {x1,...,xn}.

The proof that ¢g is linear is left is one of the homework exercises.

Now to show that ¢z is one-to-one: let « € ker(¢g). Then ¢g(x) = [z]g =
(0,...,0). By definition of ¢, that means that x = 0z +... + 0z, = 0. Then
ker(¢g) = {0}, and so ¢ is one-to-one. Since dim(V) = dim(F™) = n, it
also follows that ¢z is onto.

O

Definition 8. Let V, W be vector spaces over F', dim(V) = n, dim(W) = k,
a={x1,...,xn} an ordered basis for V, 8 ={yi1,...,yx} an ordered basis for
W, and let T : V. — W be a linear transformation. Define [T]g to be the
following matriz in My, (F): for 1 < i < n, the i-th column of [T)5 is
[T(z:)]s-



