
MATH 320 NOTES, WEEK 7

Recall that we proved that following lemmas:
If L : V →W is a linear transformation, then

(1) ker(L) = {x ∈ V | L(x) = ~0} is a subspace of V , nullity(L) =
dim(ker(L)).

(2) ran(L) = {L(x) | x ∈ V } is a subspace ofW , rank(L) = dim(ran(L)).

(3) L is one-to-one iff kerL = {~0}.
(4) If {L(x1), ..., L(xn)} is linearly independent, then {x1, ..., xn} are

linearly independent.
(5) If span({x1, ..., xn}) = V , then span({L(x1), ..., L(xn)}) = ran(L).

Theorem 1. Suppose that V is a finite dimensional vector space and L :
V →W is a linear transformation. Then

dim(V ) = nullity(L) + rank(L).

Proof. Suppose that α = {x1, ..., xn} is a basis for ker(L). Extend α to a
basis β = {x1, ..., xk, xk+1, ..., xn} for V . Let

γ = {L(xk+1), ..., L(xn)}.
We claim that |γ| = n− k and that γ is a basis for ran(L).

Span First we show that span(γ) = ran(L). Since β is a basis for V ,
we have that span({x1, ..., xn}) = V , and so, by the last item (5) above, we
have that span({L(x1), ..., L(xn)}) = ran(L).

And, since x1, ..., xk ∈ ker(L), we have that:

span({L(x1), ..., L(xk), L(xk+1), ..., L(xn)}) = span(~0, L(xk+1), ..., L(xn)}) =
span(γ).

It follows that span(γ) = ran(L).
Linear independence Next we show that γ is linearly independent.

Suppose that for some scalars ak+1, ..., an,

ak+1L(xk+1) + ...+ anL(xn) = ~0.

Then, by linearity,

L(ak+1xk+1 + ...+ anxn) = ~0.

So, ak+1xk+1 + ... + anxn ∈ ker(L). Then since α is a basis for the kernel,
for some scalars b1, ..., bk,

ak+1xk+1 + ...+ anxn = b1x1 + ...+ bkxk,

then
b1x1 + ...+ bkxk − ak+1xk+1 − ...− anxn = ~0.

Since β is linearly independent, we have b1 = ... = bk = ak+1 = ... = an =
0, which is what we wanted to show.
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Note that, since γ is linearly independent, for any k < i < j ≤ n, L(xi) 6=
L(xj). (Otherwise L(xi) − L(xj) would be a nontrivial linear combination

equal to ~0.). So, dim(ran(L)) = |γ| = n− k.
In conclusion,

nullity(L) + rank(L) = k + (n− k) = n = dim(V ).

�

Corollary 2. Suppose T : V → W is a linear transformation, V is finite
dimensional, and dim(V ) = dim(W ).

Then, TFAE

(1) T is one-to-one;
(2) T is onto;
(3) rank(T ) = dim(V ).

Proof. We have that T is one-to-one iff kerT = {~0} iff nullity(T ) = 0 iff
rank(T ) = dim(V ) = dim(W ) iff dim(ran(T )) = dim(W ) iff ran(T ) = W iff
T is onto.

�

Theorem 3. Let V,W be two vector spaces over F , and suppose that {v1, ..., vn}
is a basis for V . Then for any fixed set of vectors {w1, ..., wn} in W , there
is a unique linear transformation T : V →W , such that for all i ≤ i ≤ n,

T (vi) = wi.

Proof. For the existence, define a linear transformation T as follows. Let
x ∈ V . Let a1, ..., an be the unique scalars, such that

x = a1v1 + ...+ anvn.

Set T (x) = a1w1 + ... + anwn. Then by definition, for every 1 ≤ i ≤ n,
T (vi) = wi.

Next we have to show that T is linear. So, suppose that x, y ∈ V and
c ∈ F . we have to show that T (cx + y) = cT (x) + T (y). Let a1, ..., an and
b1, ..., bn be the unique scalars, such that

• x = a1v1 + ...+ anvn,
• y = b1v1 + ...+ bnvn.

Then,

• T (x) = a1w1 + ...+ anwn,
• T (y) = b1w1 + ...+ bnwn.

So, cT (x) + T (y) = c(a1w1 + ...+ anwn) + b1w1 + ...+ bnwn =

= (ca1 + b1)w1 + ...+ (can + bn)wn.

Also, we have that

• cx+ y = c(a1v1 + ...+ anvn) + (b1v1 + ...+ bnvn) =

= (ca1 + b1)v1 + ...+ (can + bn)vn, and so,
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• T (cx+ y) = (ca1 + b1)w1 + ...+ (can + bn)wn.

It follows that T (cx+ y) = cT (x) + T (y). So T is a linear transformation.

Next we have to show uniqueness. To that end, suppose that T,U : V →
W are two linear transformations, such that for all 1 ≤ i ≤ n,

T (vi) = U(vi) = wi.

We have to show that T = U .
Let x ∈ V be arbitrary. Let a1, ..., an be the unique scalars, such that

x = a1v1 + ...+ anvn. Then, by linearity of T ,

T (x) = T (a1v1 + ...+ anvn) = a1T (v1) + ...+ anT (vn) = a1w1 + ...+ anwn.

And similarly, by linearity of U ,

U(x) = U(a1v1 + ...+ anvn) = a1U(v1) + ...+ anU(vn) = a1w1 + ...+ anwn.

So T (x) = U(x). Since x was arbitrary, it follows that T = U . �

Corollary 4. Let T,U : V →W be two linear transformations and {v1, ..., vn}
be a basis for V . Suppose that for all i ≤ i ≤ n, T (vi) = U(vi). Then T = U .

2.2 The matrix representation of a linear transformation

Recall that given a matrix A ∈ Mk,n(F ), multiplication by this matrix,

LA : Fn → F k, defined by LA(x) = Ax, is a linear transformation.
In this section we will see that every linear transformation T : V → W ,

where V is finite dimensional, can be viewed as multiplication by a matrix.
Since the domain of matrix multiplication is of the form Fn, first we have
to find a way to identify V as Fn, where n = dim(V ). For that we need the
notion of an ordered basis β for V . Then, for a vector x ∈ V , the notion of
a coordinate vector of x relative to β.

Definition 5. β = {x1, ..., xn} is an ordered basis for a vector space V ,
if {x1, ..., xn} is a basis for V , and the vectors are ordered according to the
indices. In other words the order of the vectors matter.

Example: {1, x, x2} is an ordered basis for P2(F ).

Note that {x, 1, x2} is a different ordered basis for P2(F ).

Definition 6. Let β = {x1, ..., xn} be an ordered basis for V and x ∈ V .
The coordinate vector of x relative to β is

[xβ] = 〈a1, ..., an〉,
where a1, ..., an are the unique scalars in F , such that x = a1x1 + ...+ anxn.

Note that [xβ] ∈ Fn.

Examples: Consider p = 5 + 210x− 3x2 ∈ P2(F ).
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(1) Let β = {1, x, x2}, then

[p]β = 〈5, 210,−3〉;
(2) Let α = {x2, x, 1}, then

[p]α = 〈−3, 210, 5〉;
(3) Let γ = {1 + x, x+ x2, x2}. Then

[p]γ = 〈5, 205,−208〉;
More examples:

(1) Let x = 〈a1, ..., an〉 ∈ Fn, and let e = {e1, ..., en} be the standard
ordered basis. Then

[x]e = x

.
(2) Let x = 〈4, 0,−2〉 ∈ F 3 and α = {〈1, 1, 0〉, 〈1,−1, 0〉, 〈0, 0, 2〉}. Then

[x]α = 〈2, 2,−1〉.

(3) Let A =

(
1 2
−1 0

)
, and let e = {E11, E12, E21, E22} be the standard

ordered basis. Then

[A]e = 〈1, 2,−1, 0〉;
(4) Let A be as above, and β = {E11, E11+12, E11+21, E22}. Then

[A]β = 〈0, 2,−1, 0〉.
The next lemma shows that we can use the coordinate vector representa-

tion to identify a vector space V of dimension n with Fn.

Lemma 7. Suppose V is a vector space over a field F , dim(V ) = n, and β
is an ordered basis for V . Let φβ : V → Fn be given by

φβ(x) = [x]β.

Then φβ is a one-to-one, onto linear transformation.

Proof. Let β = {x1, ..., xn}.
The proof that φβ is linear is left is one of the homework exercises.
Now to show that φβ is one-to-one: let x ∈ ker(φβ). Then φβ(x) = [x]β =

〈0, ..., 0〉. By definition of φβ, that means that x = 0x1 + ...+0xn = ~0. Then

ker(φβ) = {~0}, and so φβ is one-to-one. Since dim(V ) = dim(Fn) = n, it
also follows that φβ is onto.

�

Definition 8. Let V,W be vector spaces over F , dim(V ) = n, dim(W ) = k,
α = {x1, ..., xn} an ordered basis for V , β = {y1, ..., yk} an ordered basis for

W , and let T : V → W be a linear transformation. Define [T ]βα to be the

following matrix in Mk,n(F ): for 1 ≤ i ≤ n, the i-th column of [T ]βα is
[T (xi)]β.


